Mitochondrial fatty acid synthesis is an emergent central regulator of mammalian oxidative metabolism

Contrary to their well-known functions in nutrient breakdown, mitochondria are also important biosynthetic hubs and express an evolutionarily conserved mitochondrial fatty acid synthesis (mtFAS) pathway. mtFAS builds lipoic acid and longer saturated fatty acids, but its exact products, their ultimate destination in cells, and the cellular significance of the pathway are all active research questions. Moreover, why mitochondria need mtFAS despite their well-defined ability to import fatty acids is still unclear. The identification of patients with inborn errors of metabolism in mtFAS genes has sparked fresh research interest in the pathway. New mammalian models have provided insights into how mtFAS coordinates many aspects of oxidative mitochondrial metabolism and raise questions about its role in diseases such as obesity, diabetes, and heart failure. In this review, we discuss the products of mtFAS, their function, and the consequences of mtFAS impairment across models and in metabolic disease.

Be the first to leave a comment!