AIM Center Publications

Published:
09.14.2019
| FULLTEXT

Chronic non-communicable diseases share the pathomechanism of increased reactive oxygen species (ROS) production by nicotinamide adenine dinucleotide phosphate (NADPH) oxidases, known as Nox. The recent discovery that expression of Nox1, a Nox isoform that has been implicated in the pathogenesis of...

Published:
09.14.2019
| FULLTEXT

Endocrine therapy is an effective option for the treatment of estrogen receptor alpha (ERα)-positive breast cancers. Unfortunately, a large fraction of women relapse with endocrine-resistant tumors. The presence of constitutively active ERα mutants, found in a subset of relapse tumors, is thought to...

Published:
07.03.2019
| FULLTEXT

There are striking similarities between the strategies ant colonies use to forage for food and immune systems use to search for pathogens. Searchers (ants and cells) use the appropriate combination of random and directed motion, direct and indirect agent-agent interactions, and traversal of physical...

Published:
03.23.2019
| FULLTEXT

Clioquinol, one of the first mass-produced drugs, was considered safe and efficacious for many years. It was used as an antifungal and an antiprotozoal drug until it was linked to an outbreak of subacute myelo-optic neuropathy (SMON), a debilitating disease almost exclusively confined to Japan...

Published:
03.05.2019
| FULLTEXT

Syntaxin 17 (Stx17) has been implicated in autophagosome-lysosome fusion. Here, we report that Stx17 functions in assembly of protein complexes during autophagy initiation. Stx17 is phosphorylated by TBK1 whereby phospho-Stx17 controls the formation of the ATG13FIP200 mammalian pre-autophagosomal...

Published:
03.05.2019
| FULLTEXT

Syntaxin 17 (Stx17) has been implicated in autophagosome-lysosome fusion. Here, we report that Stx17 functions in assembly of protein complexes during autophagy initiation. Stx17 is phosphorylated by TBK1 whereby phospho-Stx17 controls the formation of the ATG13FIP200 mammalian pre-autophagosomal...

Published:
06.26.2018
| FULLTEXT

Recently, NIH has funded a center for autophagy research named the Autophagy, Inflammation, and Metabolism (AIM) Center of Biomedical Research Excellence, located at the University of New Mexico Health Science Center (UNM HSC), with aspirations to promote autophagy research locally, nationally, and...

Published:
04.07.2018
| FULLTEXT

The Ser/Thr protein kinase mTOR controls metabolic pathways, including the catabolic process of autophagy. Autophagy plays additional, catabolism-independent roles in homeostasis of cytoplasmic endomembranes and whole organelles. How signals from endomembrane damage are transmitted to mTOR to...

Published:
03.28.2018
| FULLTEXT

The autophagy pathway known also as macroautophagy (herein referred to as autophagy) is characterized by the formation of double-membrane organelles that capture cytosolic material. Based on pathway termination alternatives, autophagy has been divided into degradative and secretory. During...

Published:
01.29.2018
| FULLTEXT

Macroautophagy/autophagy is a fundamental intracellular homeostatic process that is of interest both for its basic biology and for its effect on human physiology in a wide spectrum of conditions and diseases. Autophagy was first appreciated primarily as a metabolic and cytoplasmic quality control...

Published:
01.22.2018
| FULLTEXT

Autophagy is conventionally described as a degradative, catabolic pathway and a tributary to the lysosomal system where the cytoplasmic material sequestered by autophagosomes gets degraded. However, autophagosomes or autophagosome-related organelles do not always follow this route. It has recently...

Published:
01.17.2018
| FULLTEXT

Macroautophagy/autophagy is a homeostatic process with multiple effects on immunity. One of the pivotal contributions of autophagy in immunity is the cell autonomous control of inflammation. This property leads to systemic consequences and thereby influences the development of innate and adaptive...